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1 PREFACE 

The intent of this document is to lay a general foundation for effective and systematic management of 
data and information for real-time performance monitoring of large power systems.  It does so through a 
consideration of overall data applications, and by drawing upon industry experience in the operation of 
wide area measurement systems. 

The treatment of these topics is intendedly broad, and digressions into underlying details have been 
avoided so far as possible.  The reader may note, for example, that the distinction between data and 
information is not absolute – e.g., the information produced by one process may serve as raw input for 
some later process at higher level.  There is also some ambivalence in terms such as "archive" and "real 
time."  Their meaning was fairly clear for analog data streams, but it is much less so for high performance 
digital systems.  Such terminology should be interpreted according to context, and with support from the 
various cited references.  A Glossary is provided in Section 9 as a guide to acronyms. 
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2 INTRODUCTION 

Over the past century, power systems have advanced from single generating plants to highly inter-
connected grids spanning thousands of miles. These modern power systems play an essential role in our 
society by providing a highly reliable energy source. However, they occasionally experience massive 
breakups affecting large residential and industrial areas [1,2]. The lessons learned from such breakups are 
instructive but costly.  

Assuring power system reliability has been a major objective since the beginning of the industry. Today’s 
power engineers are especially concerned about power system reliability for a number of reasons.  
Economy growth demands more power from the electric infrastructure, and increases the stress upon 
aging facilities. Deregulation encourages operating the system in ways for which it was not originally 
designed, and that operation becomes increasingly variable and difficult to predict.  Grid managers find it 
increasingly difficult to determine and observe the limits of safe operation. 

The US Department of Energy (DOE) has been addressing such matters through the Transmission 
Reliability Program (TRP).  A major vehicle for this is the (Consortium for Electric Reliability 
Technology Solutions (CERTS), which extends and broadens the earlier Wide Area Measurement 
System (WAMS) Projects [3].  

A "roadmap" for CERTS research into real-time grid reliability management is shown in Figure 1.   The 
tools discussed in this report are part of research area A, Real-Time Performance Management (RTPM).  
This function requires extensive and timely data, collected across the power grid and at different levels, to 
determine the operating status and operating trend of the grid.  

Modern power systems now contain many instruments and recording devices, and vast amounts of data 
can be acquired. Even though data coverage is not always satisfactory, the major challenge has shifted 
from data acquisition to effective data utilization.  Major factors in this include timely integration of 
multi-source data, extraction and distribution of useful information, and assuring general integrity of the 
overall information system [4,5]. The processes and technologies for satisfying these needs are key 
elements of the CERTS R&D roadmap.  

 

Figure 1  Secure and reliable power system operation (CERTS R&D roadmap) 
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3 BACKGROUND1 

Well integrated data and information are essential to the management of large power systems.  The 
primary "backbone" for this during real time operation is the Supervisory Control and Data Acquisition 
system, which is often just called SCADA.   

Most SCADA systems have evolved over a period of decades, and are shaped to the needs of a specific 
utility.  Reliability events such as the system breakups in 1996 [1,6] have demonstrated the need to share 
such data more widely.  To this end, the North American Electric Reliability Council has fostered the 
Reliability Information Network (RIN) [7], and has networked individual SCADA systems into its 
NERCNet data center at Princeton, NJ [8].  

Many aspects of power system behavior are not visible to conventional SCADA technologies.  Chief 
among these are fast dynamic activity that cannot be captured at the slow data rates employed by standard 
SCADA, and small but meaningful equipment interactions that are below its numerical resolution [9].  To 
fill this gap, several decades ago the Bonneville Power Administration (BPA) joined with other utilities in 
the western interconnection to develop and deploy what was then called the Western System Dynamic 
Information Network (WesDINet).  High quality dynamic information was seen as essential to assets 
management visions, such as the Intelligent Energy System (IES) and EPRI's Flexible AC Transmission 
System (FACTS).  

In the early 1990's the DOE performed an assessment of longer-term research and development needs for 
the future electric power system.  BPA and other Federal utilities conveyed a strong concern that market 
forces attending market restructuring were a major disincentive to what are now called reliability 
investments, and that reliability assets were undergoing a protracted and serious decline.  A considerably 
enhanced information infrastructure, defined broadly to include human resources and collaborative 
procedures, was seen as the most immediate critical need for improving both reliability and assets 
management.  Technology aspects of WesDINet were given support under the DOE's Wide Area 
Measurements (WAMS) Project [3].  WAMS has since become a generic term, and WAMS networks are 
fast evolving into a high quality adjunct or extension to SCADA facilities. 

Two large WAMS systems are operating in the NERC area [10,11].  In the western interconnection, the 
"WECC WAMS" continuously acquires some 2000 signals at rates of 20-30 samples per second (sps).  Its 
primary backbone is formed of 60 phasor measurement units (PMUs), of which most are linked into one 
or more of seven distinct synchronized phasor measurement (SPM) networks.  All of these networks are 
based upon BPA's phasor data concentrator (PDC) [12].  In the eastern interconnection, "WAMS east" 
contains similar technologies but on a smaller scale.  These are rapidly expanding under the Eastern 
Interconnection Phasor Project (EIPP) [13].  The DOE is fostering a very active collaboration between 
CERTS and the earlier WAMS participants in the deployment and use of both WAMS systems. 

Even though data coverage is not always satisfactory, the major challenge in the WAMS effort has shifted 
from data acquisition to effective data utilization.  As anticipated in [3] and [4], WAMS is maturing into a 
dynamic information network, and it is merging into a broader information system for which SCADA 
remains the primary platform.  Phase angle data have become a routine SCADA element at some utilities, 
and technology distributed with BPA's PDCs allows all utility staff to view real time displays of dynamic 
activity in both the time domain and the frequency domain. 

Another salient example of integrated data utilization is the Grid-3P (Grid Real-time Performance 
Monitoring and Prediction Platform) system that CERTS has developed and demonstrated For NERCNet. 
[14].  Further details of Grid-3P are provided later in this document. 

                                                      
1 Some materials in this section are taken from cited WAMS references. 
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The data needed to manage a modern power system extends well beyond WAMS and SCADA.  Prompt 
access to market data is critical to some aspects of grid management, and detailed logging of market 
transactions is essential.  And, at the other end of the time scale, long term management of the grid may 
draw upon reports or operational data that are days to decades old.  Past events on the system often 
contain useful information concerning more recent events, or about future system behavior.  In extreme 
cases it may be highly desirable to “browse” the collective knowledge of an entire power system on a 
given subject, without knowing where promising sources are located or if they even exist [4].  Modern 
information technology makes this entirely feasible.  The resources critical to the task are systematic 
access to the overall data base, plus a suitably “intelligent” search engine.  

The data from which information must be extracted takes on many forms, and it must be available for 
processing in many different time frames.  The nature, context, and priority of that processing are not 
very predictable.  For this reason, and because computer storage has become extremely affordable, the 
prudent strategy is to "record everything and sort it out as needed"—i.e., to maintain a comprehensive 
archive [15]. There are many practical issues to consider in making this archive reliable, consistent, 
secure, and available to those who need it.  There are also many policy issues to resolve in the balancing 
of grid management needs against the proprietary rights of data owners.   

The balancing of ownership rights against grid management needs has been a driving factor in the 
deployment, operation, and use of the WECC WAMS.  Though WAMS provides just part of the 
information needed in grid management, WAMS operation in the WECC provides a useful paradigm for 
management of the collective data base for a large power system.  This theme is pursued in the section 
below. 

 

4 WAMS OPERATION AS A PARADIGM FOR INFORMATION MANAGEMENT2 

A major WAMS does not emerge overnight -- it evolves over time, building upon existing resources to 
address additional needs.  This implies a mixture of technologies, data sources, functionalities, operators, 
and data consumers.  Some governing realities are the following: 

• System configuration is strongly influenced by geography, ownership, selected technology, and 
the technology already in service (legacy systems). 

• Required functionalities are determined by who must (or must not) see what, when, and in what 
form. 

Overall, the forces at work strongly favor wide area measurement systems that evolve as "networks of 
networks" through collaborative agreements among many parties.  

There are a lot of advantages to this situation.  Interleaving networks that have different topologies and 
different base technologies can make the overall network much more reliable, while broadening the 
alternatives for value engineering.  It also permits utility level networks to be operated and maintained on 
the basis of ownership.  The ability of a utility to retain data until it is no longer sensitive is an important 
aspect of information sharing in the new power system. 

Salient disadvantages to this situation include protracted reliance upon obsolescent or incompatible 
equipment types, plus various institutional impediments to sharing of costs and information.  These are 
major factors in the deployment, operation, and value of the WAMS infrastructure.   

The WECC WAMS is engineered to support the applications shown in Table 1.  Some of these 
applications are necessarily performed on line, in "real time," either within the control center(s) or by 

                                                      
2 Much of the text in this section is borrowed from reference [5]. 
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supporting staff at other locations.  Off line applications may be performed later, or at still other locations.  
This separation is largely based upon workflow priorities, and/or the length of time that is needed to 
assemble the relevant data plus the staff resources to process them.  The dominant factors in this are data 
access policies and resource investments, not the performance of available technology. 

Essentially all of the Table 1 applications software can be adapted to real time use.  The software is 
designed to process a series of files, and the processing logic for a stream of files that arrive in real time is 
nearly indistinguishable from the processing logic for a series of files extracted from a fixed archive.  
WAMS data files can always be thought of as belonging to some archive, though the age of that archive 
may range from seconds to decades. 

Successful use of the WAMS analysis software requires that the data presented to it be consistent, timely, 
and comprehensive.  These qualities are still lacking in the present generation of WAMS facilities.  
Salient problems include the following: 

A. inconsistent measurements, due to differences in instrument logic or synchronization 
B. defective measurements, due to hardware anomalies or messages lost somewhere in the data system 
C. delayed information, due to delayed data release, need to repair defective measurements, special 

requests for unusual data, or difficulty in developing the sequence of events 
D. incomplete information, due to limited WAMS coverage or defective measurements that cannot be 

repaired 
Synchronized phasor measurement (SPM) systems are not entirely free of the technical problems shown 
above.  The merits of synchronized data collection are very clear, however, and the WECC WAMS is 
evolving toward a full synchronized system measurement (SSM) with an extended coverage that will 
include key generators and major control systems. 

The management of WAMS archives is a direct extension of WAMS operation.  Good operating 
practices, like good data, are the key to success.  The reader should consult reference [5] for detailed 
recommendations on WAMS operation, and take note of "calibration & refinement of measurement 
facilities" in Table 1.  Recent examples of this particular activity are shown in references [10] and [16]. 

The engineering of any large information facility must reflect both the needs to be addressed, and the way 
the facility will be used.  Deployment of fully integrated WAMS facilities is hampered by significant 
uncertainties in both regards.  These reflect unresolved policy issues concerning grid management, access 
to market sensitive operating data, and the sharing of infrastructure costs [17].   

One result of these uncertainties is that the technology needs for management and use of WAMS data 
must be estimated without full knowledge of the system architecture, or of process timing.  Many 
technology needs are generic to any information system, however, and Figure 2 provides an overview of 
anticipated technology needs for real-time applications for system monitoring, control, and market 
analysis. Within this framework the Pacific Northwest National Laboratory (PNNL) and the Electrical 
Power Group (EPG) are collaborating in a joint effort under CERTS to refine these requirements and to 
explore most appropriate hardware and software structures.  
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Table 1.  General applications for WAMS data 

 
•  Real time observation of system performance 
•  Early detection of system problems 
•  Real time determination of transmission capacities 
•  Analysis of system behavior, especially major disturbances 
•  Special tests and measurements, for purposes such as 
   - special investigations of system dynamic performance 
   - validation & refinement of planning models 
   - commissioning or re-certification of major control systems 
   - calibration & refinement of measurement facilities 
•  Refinement of planning, operation, and control processes for best use of transmission assets 

 

 

Figure 2  Data and information archiving management 
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5 DATA ARCHIVING REQUIREMENTS FOR REAL-TIME PERFORMANCE 
MONITORING APPLICATIONS 

Many fundamental organizational and operational changes are happening in the electricity industry. 
Traditional vertical integrated assets of utilities have been separated, creating not just organizational 
changes, but also operational challenges to maintain system reliability and efficient competitive markets 
with fragmented components and different asset’s ownership. 

Emerging real-time performance management (RTPM) needs and application tools require high levels of 
data availability, data archiving and better data and information quality because stakeholders non-
compliance with performance guides, standards and market rules could translate into electricity supply 
reliability risks and high economic penalties that will have to be validated and substantiated using easily 
accessible, accurate and reliable archived data. 

End-users experience using some already operational RTPM applications researched, developed and 
delivered by CERTS indicates the urgent need to improve data archiving strategies and capabilities that 
warrant: 

• Data quality and integrity 
• Confidential data-sharing 
• Effective data and information integration 
• Access and restore times  

The above requirements should respond to real-time database growth and end-users with different data 
needs and skill levels but with real-time interaction requirements. 

5.1 CERTS Research Areas for Real-Time Grid Reliability Management and Real-time 
Performance Monitoring Requirements 

The CERTS real-time grid reliability management research roadmap is redrawn below in Figure 3, 
showing four major areas (A through D) to improve grid reliability management; the tools discussed in 
this report are part of research area A, Real-Time Performance Management.    

 
Figure 3  Secure and reliable power system operation (CERTS roadmap) 
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The direction set by the CERTS Management Steering Committee for the data archiving project is to 
research, recommend and prototype data archiving capabilities. Systems need to be developed that fulfill 
the data sizing, quality, response, data-sharing confidentiality, geo-graphic visualization, users with 
different data needs and skill levels and security and archiving requirements, specifically for the RTPM 
applications CERTS has already delivered for real-time monitoring operations, and for other RTPM 
applications CERTS currently has under research, development or field test in its Real-Time Grid 
Reliability Management research area. 

5.2 Real-Time Performance Monitoring (RTPM) Applications  

Figure 4 describes in more detail the specific objectives for the metrics, monitoring, analysis and 
assessment stages of CERTS performance management strategy, and also shows that the CERTS set of 
RTPM tools discussed in this paper, is fulfilling the monitoring stage, allowing system dispatchers and 
operators to monitor and track in real-time performance metrics related to reliability parameters such as 
frequency, voltage and system dynamics. 

 

Figure 4  Real-time performance applications in control/monitoring environments 
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Figure 5  Example of real-time performance monitoring application – ACE-Frequency monitoring 
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6 DATA ARCHIVING CONCEPTUAL DESIGN FOR REAL-TIME PERFORMANCE 
MONITORING APPLICATIONS 

This section addresses the data archiving system design at the conceptual level. The data archiving system 
should be generic and modular to ensure its expandability, efficient and cost-effective to facilitate its 
implementation, and secure and non-vulnerable to protect data from damage and unauthorized access. The 
concept of enterprise-like systems is adopted for the data archiving system. 

6.1 Basic Principles of Data Archiving Design  

A systematic and comprehensive data archiving system for power systems will involve every detail in 
power systems, from data acquisition units to data infrastructure and to how data would be retrieved and 
used for system analysis. It may also pose changes to existing power systems and large financial 
investments. Because of this, it is not feasible to create an archiving system “being all things for all 
people” in the beginning, but we should start small but think long-term. This “start small but think long-
term” approach has been successfully used in other industries [18]. The methodology is to have an 
extensive archiving system design which is generic and modular, efficient and cost-effective, and secure 
and non-vulnerable, and then to build a small prototype that can grow into a large system with available 
investments and resources.  

6.1.1 Generic and modular 

Power systems are continuously evolving with needs and improvements, which has resulted in different 
types and formats of data measurements existing in current systems. A data archiving system should be 
able to accept data from such different sources. It should also be generic enough to be compatible with 
future system evolvement without major modifications. Furthermore, such a data archive system should 
not be limited to power system physical quantities. Other types of data (e.g. market data) should also be 
included in archives. So a modular structure should be considered to meet requirements for different data 
types and formats.  

6.1.2 Efficient and cost-effective 

NERCNet and WAMS, plus the Internet, have laid a foundation for data collection and transfer. No 
infrastructure or limited infrastructure should be built for data archive at the first stage. However, the data 
archive system utilizing NERCNet, WAMS and the Internet should be examined in terms of efficiency 
and performance. 

6.1.3 Secure and non-vulnerable 

Data volumes, and information demands, call for distributed storage and management. Also a distributed 
system is less vulnerable than a centralized system, in the event of data network outage, data device 
breakdown, or terrorist attack. Data quality control and data access control are also essential to data 
security in the archiving system. 

6.2 Enterprise-like System – a Vision for Data Archiving for RTPM 

As shown in Figure 3, the challenge for power engineers is to ensure the reliability, market performance 
and infrastructure security of a power grid. This will not only require electrical data measurements and 
information from physical power systems via SCADA systems or WAMS, but also other information, for 
example, from power market participants, energy resources, government. A comprehensive power system 
is very much like an enterprise-like system consisting of different sources as shown in Figure 6. Though 
the current phase targets the information from SCADA and WAMS and markets, the data archiving 
system should leave space for future development to incorporate information from other sources. On the 
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other hand, the data archiving system should be able to serve data needs from existing and potential 
power system performance management applications. Examples of these applications are the CERTS 
ACE-frequency monitoring, supplier-control area performance monitoring for AGC (Automatic 
Generation Control) and FRR (Frequency Response Reserve), market performance monitoring, and 
dynamic monitoring using phasor measurements. There are common data needs among all the 
applications, but each application has its own special data needs as well. Therefore an extension of the 
data part of a single application will not be sufficient and not generic enough for other applications. 
Instead, an independent archiving system should be designed and constructed, taking into account all the 
data needs.  

 

 

Figure 6  Enterprise-like network with our focus indicated in yellow 

The concept of the enterprise-like system has been successfully implemented in many industry areas 
because its modular structure gives the convenience for each party to “plug in and play” [19]. With this 
concept applied to the data archiving system, each data source and each data user are relatively 
independent parts, acquiring, storing and using data as they are doing now. From the perspective of 
physical entities, this enterprise-like data archiving system is shown in Figure 7. Each entity may have its 
own data acquisition mechanism and data format.  

Major entities involved in the data archiving system are the following: 

• Reliability Organization and Reliability Organization Data Center: The data search engine 
and central database (see Section 6.3) reside here. The Reliability Organization is also the 
authority implementing the data archiving system. 

• Government Authorities: They may need power grid infrastructure information, major event 
data, and market overview information to monitor the overall performance of power systems and 
power markets.  
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• Security Coordinators: They need generation data, load data, topology information, and 
frequency and voltage data for monitoring system operation, ancillary service, and operation 
compliance.  

• Utilities: They include generation, transmission, and distribution operators. They provide data 
and also they need data for system analysis, scheduling, and control. 

• Control Areas: They are in charge of regional system operation. Data are needed for load flow 
inter-area exchange monitoring, frequency monitoring and control, and reserve and service 
monitoring. 

• Market Participants: They need data for market analysis, market performance monitoring, and 
market planning. 

• Energy Companies: They need to collect information for market activities. 

• Data Marketers: They provide data for profit. The data archiving system has a limited data 
processing function. But a data marketer can collect data and add value to it by a post-processing 
service. Data marketers may also provide a data search engine and maintain its own central 
database.  

 

 

Figure 7  Modular structure and data interface 
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data users. Data conversion also provides a standardized naming system for derived signals (e.g. RMS 
signals derived from phasor measurements) for easy data sorting and management.  

6.3.2 Data search engine and central database 

Data search engine is a directory-service-like information server. Instead of collecting all the data in the 
central database, the data center collects information indicating where and what data is available. The data 
search engine accepts user retrieval requests and routes the requests to proper data sources, which then 
return the requested data to the data user directly or return the data to the data center and the data center 
returns the data to the user. The data that has been retrieved and returned to the data center enter the 
central database and are made available for future requests. Some rules for data requests may be 
established to facilitate data retrieval. For example, what data should be returned to the data center and 
enter the central database? Data marketers may provide the functions similar to the data center. 

6.3.3 Self-evolving system 

The RTPM data archive system is designed as a self-evolving system. Though Figure 7 shows a reliability 
organization data center, there is no need to move all the data from various data sources to the central 
database at once. To avoid massive storage requirements at the data center, only selective data should be 
stored at the data center. Data selection can be done by some arbitrary rules (e.g., select data for a specific 
event) or by user’s data retrieval requests (as stated in 6.3.2). In this way, the data storage at the data 
center will grow with time. In addition, this central database and the original data source are backup 
copies of each other. 

6.3.4 Data stamp 

A data stamp associated with a specific data file may include the following fields: time, key words, 
associated event, data location, data type, retrieval frequency, data quality flag, data security level, and 
data description (Figure 8). The fields of time, key words, associated event, data location and data 
description may help data search. A data file with a low data retrieval frequency for a certain amount of 
time is indicated as low-usage data and should be removed from the central database at the data center. 
For example, less than 5 times a year should be considered as low-usage data. Data security level is used 
for data access control, and data quality flag indicates how good the data are. They are discussed in detail 
in the next section. 

 

 

Figure 8  Data stamp structure 
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2) The data search engine either finds the data in the central database or routes the request to proper data 
sources. Note that the request can be routed to multiple data sources based on the contents of the 
request. 

3) If the requested data are available in the central database, the data center returns the data to the user. 

4) If the requested data are not available in the central database, the request is routed to appropriate data 
sources, and the data sources return the requested data to the data center. The data sources can also 
return data to the data user directly. Note that the data center can send out its own data requests to 
data sources as well. 

5) The data center sends the data to the user and also keeps a copy in the central database as archive. The 
data center also log the data transaction in its database.  

6) The user may save the requested data in its own local database. 

 

Figure 9  Data retrieval and self-evolving data archive 
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7 DESIGN ISSUES ASSOCIATED WITH THE TECHNICAL DATA ARCHIVING 
REQUIREMENTS 

Four technical requirements are identified in Section 5 based on the needs of existing and potential power 
system performance management applications. These requirements are:  

• Warranty of data quality and integrity. 

• Confidential data sharing. 

• Effective data and information integration. 

• Adaptability to data requests with different needs and different user levels. 

Figure 10 shows the typical data flow in the RTPM data archiving system. Details on how to satisfy the 
four data requirements are addressed below, respectively. 

 

Figure 10  Typical data flow in the data archiving system 

 

7.1 Data Quality, Integrity and Quality Improvements 

Wrong data would be worse than no data. So a sufficient level of data quality for the data archive is 
essential. Data quality control is an important part of the data archiving system. Data quality control can 
be performed at one or several places as the data are being collected, transmitted and processed. 
Regardless of where quality control is performed, it is important to mark or “flag” data values that have 
failed quality control or have been modified by quality control processes. These data quality control flags 
help database managers and analysts to more accurately interpret and manage the data. A place is reserved 
in data stamps (Figure 8) for storing the quality flags.  
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checking, user evaluation, and other evaluation methods if available. To avoid overloading data archiving 
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• Suspect or erroneous data – illogical or improbable data values that do not fall within expected 
ranges or meet established principles or rules. 

• Missing data – data values that are missing because of hardware/software malfunction or quality 
control edits.  

• Inaccurate data – data values that are systematically inaccurate (but within the range of plausible 
values) because of equipment measurement error (e.g., equipment improperly calibrated). 

• Credible data – data values that can be used with confidence.  

Data quality levels should be constantly updated when new evaluations are conducted. Data quality levels 
can be expanded to a more detailed degree in practical implementation. For example, a few more levels 
can be defined to indicate how good the credible data are.  

In Figure 10, the initial/advanced data check and user feedback are the major data quality control 
procedure. Figure 11 further details this quality control procedure for different data categories. Error 
detection capabilities are a critical component of a data archiving system. Some power system data 
measurement equipment may have a built-in initial error detection mechanism, which is shown as initial 
data check in Figure 11. This initial data check gives a quick look at the raw data from a single data 
acquisition unit to identify some obvious errors, e.g., out-of-range check, rate-of-change check, etc. Initial 
data check can also include the status and quality evaluation of data acquisition equipment. This 
equipment evaluation should consider the nominal error, the scheduled out-of-service for routine check, 
and equipment malfunction, etc. 

 

Figure 11  Data quality control procedures 
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Additional advanced error detection capabilities (advanced data check in Figure 11) may be desirable for 
data archiving systems. Advanced data check will not only focus on a single data acquisition unit but, 
more importantly, perform inter-comparison of data from different data units. Rules for advanced data 
check may be different for different data categories, or even for different data sources in the same 
categories.  

Local and global data analysis, usually performed by data users, provides additional opportunities to 
determine the quality of data used for the analysis. Each data source can perform its own local data 
analysis, while security analysis involves data from multiple data sources (Figure 11).  

Advanced data check and data analysis can augment the initial routine checking by giving us an idea of 
the relative utility of data streams, and in essence, tell us "how good" the good data might be. These 
higher-level checks can also point out deficiencies that are not necessarily detectable within individual 
data unit checks. The creation of the higher level products also provides the user community with heavily-
screened, "pre-chewed" data sets ready for use in high-level scientific research. 

Major data quality control rules should include: 

• Data acquisition unit nominal error: Usually this information can be located on the name plate or 
found in the manual or specifications of data recording devices. 

• Out-of-service status: Data recording devices may be scheduled for routine check or they are 
simply out of service because of unscheduled repairs. 

• Malfunctions in transducers, communication and storage: Correct recoverable errors via error 
correction codes, redundant transmittal or other means as deemed necessary or prudent. 

• Out-of-range check: Data values should be checked against generating limits, bus voltage limits 
and other pre-defined data ranges. 

• Rate-of-change check: Difference between two consecutive data points are calculated and 
compared with pre-defined range.  

• Inter-comparison for data integrity: For example, frequency measurements can be compared with 
frequency calculation based on voltage measurements. 

• User evaluation through data analysis: Data users may find some not-easy-to-find errors 
associated with the data they use for data analysis and their feedback should be included in data 
quality evaluation. 

• Data error and deviation analysis: Using data statistics techniques to examine measurements may 
be necessary for higher data quality. For example, periodically calculate maximum, minimum, 
mean and standard deviation of data values. 

To further ensure data integrity in the archiving system, the following measures may be taken: periodic 
backup of database, offsite storage of backup data, redundant equipment and enough backup site 
capability. As mentioned in Section 6.3, this central database and the original data source are backup 
copies of each other. So there is no need to backup the central database if resource is limited. But each 
local database still needs to be backed up, because not all the data in a local database have a copy at the 
central database.   
 
An understanding of the processes that generate, use, and archive operational data are essential to 
understanding data quality. The root causes of low data quality for real-time control and monitoring 
systems can be attributed to five primary areas: 
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• Meters accuracy and data communication problems 
• Data collection synchronization 
• System downtime problems 
• Data retention policy and procedure problems 
• Database design problems 

 
Data quality in the context of its utilization for real-time monitoring and operations can best be described 
for two main purposes: real-time performance monitoring and control, and system modeling. 
Traditionally, the industry data quality focus was for accuracy and timeless. Now with new organizations 
requesting additional data and improved data quality, such data and quality need to be assessed from a 
contextual perspective using multidimensional data quality characteristics. The following two dimensions 
and corresponding nine characteristics have been identified as closely applicable for the data and data 
quality requirements for the new emerging applications required for real-time monitoring of compliance 
with traditional and new reliability and market efficiency metrics and guides: 
 

Intrinsic Data Quality                    Contextual Data Quality 
- Accuracy                                    - Value-Added 
- Consistency                                     - Redundancy 
- Synchronization                     - Timeless 
 - Accessibility 
 - Completeness 
 - Security 

 
Within the evolving operational environments of today, data quality requirements are not just good 
accuracy and timeliness. Depending on the specific application purpose and utilization, one or more from 
the above nine data quality characteristics could be even more critical and important than the traditional 
data quality parameters. Real-time control and data centers administrators will need to understand the new 
data and data quality requirements and establish specific cost-effective plans to expand and support the 
new data and data quality required by their specific business strategies and end users. 
 
A data quality program is essential for improving data quality within an organization. A good data quality 
program should: 

 
• Have clear business goals and objectives 
• Properly assign responsibilities for data and ensure that those responsible have the tools needed to 

succeed 
• Have an operational plan for improvement that specifies which improvement methods are to be 

applied to which data 
• Establish a program administration 
 

Inherent in a good data quality program is the need to translate data-customer needs into metrics, a team-
oriented approach to continuous quality improvement, and benchmarking performance. Many of the 
classical techniques of statistical quality control, such as Pareto charts and control charts, can be applied 
to the measurement, tracking, and improvement of data quality. 
 

A comprehensive approach to data quality involves more than “doing the best we can” to provide good 
data. It requires: a) evaluating the quality of data values and b) evaluating the processes that generate and 
modify data. As shown in Figure 12, this can be viewed as two parallel activities: (1) performing explicit 
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evaluation of data and (2) establishing organizational control over the processes that generate and modify 
data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12  A Framework for Improving Data Quality 

 
Figure 12 is not intended to be a flowchart of the activity of an individual data source producer or 
application; rather, it attempts to show the parallel processes that should be followed by a team of 
producers and users to improve the quality of their respective data.  

 
Actions to take on data to improve its quality should be divided into data producer and application. 
Essentially, producers must warrant the objective accuracy of a database, whereas users must determine 
its appropriateness for their intended use. The processes that generate, modify, transform, and propagate 
data should be examined, controlled, and improved whenever possible, to improve the quality of the 
resulting data. 

7.2 Confidential Data Sharing 

Because access to power system data could become a factor in the competitive energy market and 
uncontrolled data access would also pose high vulnerability for power grids, data access should be 
restricted to authorized personnel. For example, this could become critical because different entities in the 
data archiving system (Figure 7) may have business conflicts. Safe handling and proper protection of 
transmitted data in a competitive environment implies that requests for security support in 
communications need to be satisfied. To enforce data access control, the following security levels should 
be defined: 
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• Public data – These data can be accessed by anyone. Examples are electricity price, generation 
output, load demand, frequency record, etc. 

• Business proprietary – These data are related to business operation, for example, generation 
bidding price. Access to these data should be limited. Unauthorized access could pose damage to 
business operation and/or profit. 

• Utility data – Utility data include operation data, planning data and load forecast data. 

• Government/multi-utility planning – This category includes planning data involving multiple 
utilities. Government or other authority may be involved to coordinate the planning process. 

• Intelligence data – This category includes some very sensitive data, including geographical 
information of power grid, detailed information of nuclear power plants, etc. Unauthorized access 
to these data could damage homeland security or cause massive loss of power grid.  

Both data and users should have their security levels. Data with a certain security level can only be 
accessed by users with certain security levels. Obviously, users with all the other security levels can 
access the public data. But the relationship between different security levels is not a simple one-higher-
than-another relationship. For example, even the government level may not access all the business 
proprietary data. Figure 13 shows the compatibility of different security levels. Data security levels are 
stored in the data stamp (Figure 8). Because different security levels have intersections, one set of data 
may have more than one security level. For example, data with the levels of both business proprietary and 
utility can be accessed by users with the levels of either business proprietary or utility, while data with 
only business proprietary level can only be accessed by users with the same level. 

`  

Figure 13  Data security level compatibility 

Security levels of data users can be assigned based on established rules (for example, government 
intelligence agencies should have the highest security level) or mutual agreements (for example, two 
utilities can share their respective data with each other). Same as data, a single user may have more than 
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provides a great shortcut to information access. However, it also provides opportunities for unauthorized 
access. Data protection while data are being transferred should be addressed in the data archiving system 
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to operate each individual data object. The use of Bilateral Tables, as a representation of the Bilateral 
Agreement for each remote control center the control center serves, prevents unauthorized access for both 
associations and operations in objects [23][24]. Encoded data for additional security was also proposed 
for ICCP [24]. General access to WAMS data is recommended to an Internet-based method because of its 
low cost and flexibility, but appropriate security restrictions are implemented to ensure that only properly 
authorized personnel can access the data [4].  

The public data can be transferred over the Internet without protective measures. But data with other 
higher security levels may not be open transferred over the Internet. Virtual Private Networks may be 
considered to encrypt data before transfer and decrypt after transfer so that the data are opaque to other 
parties, which are not supposed to access these data [25]. For some very high security requirements, a 
dedicated connection can be considered to increase the data transfer safety.  

Tools should be provided to prevent, detect and recover from unauthorized access to data archives. Also 
all data access activities should be logged for future reference.  

7.3 Effective Data and Information Integration 

Over recent years, the number and diversity of monitoring and recording devices in power systems have 
been greatly increased. Vast quantities of data are generated on an hourly or daily basis, which are 
supposed to be essential to system monitoring, operations, management and planning. However, it is a big 
challenge to extract useful information from this data “ocean” without being flooded. The time required, 
combined with the skills and experience necessary, to retrieve and interpret data are prohibitive and 
costly. For example, in the WAMS applications, constructing an overview record for WECC  
(Western Electricity Coordinating Council) main grid behavior draws upon 6 to 10 of the 45 available 
data sources. Preliminary examination of a significant disturbance generally involves 100 or more of the 
several thousand signals that are available, with composite record lengths on the order of 20 minutes. 
Analysis in depth may involve additional signals, plus comparisons against model simulation or previous 
system events. Therefore, on one hand, a mechanism for data integration should be established. On the 
other hand, generated information from measured data should be well maintained and retrievable to other 
data users.  

To ensure an effective data and information integration, a progressive procedure may be implemented 
[26], as shown in Figure 14. The integration level becomes higher as more data and data sources are 
involved. As the integration increases, data not associated with the function purposes at each integration 
step are filtered out; therefore, information density is increased. All the raw data and generated data are 
stored in the local data source archive and/or in the user data archive. Both are made retrievable to other 
data users who need these data at a later time.  

Data acquisition consists of data recording devices, as well as data initial and advanced checks, as shown 
in Figure 11. This step fills out time, key words, data location, data type and quality flag in the data stamp 
structure (Figure 8). Data processing identifies events, generates alarm messages and relay protection 
signals in a SCADA system, and sets the data security level in the data stamp structure (Figure 8). Local 
data analysis conducts data inter-comparison, local generator performance monitoring, load flow study 
and market analysis. Data quality is re-evaluated according to the analysis results. Data applications 
involve measured data and model simulations. Data may come from multiple data sources. Major 
applications include ACE-frequency monitoring, dynamic security assessment, voltage stability 
assessment, contingency ranking, post-event analysis, etc. This is a very high level data integration step. 
Information generated at this step may be sent back to data sources, depending on specific 
implementation.  
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Figure 14  Data and information integration 

7.4 Adaptability to Different Data Requests 

Given the complexity of power systems, different data applications and data users may pose very different 
data requests to the data archiving system, which is designed to be generic to satisfy all the requests. 
Typical data users include system operators and engineers/analysts. System operators monitor and 
respond to the current or most recent system operating status, so they typically need more current data, for 
example, within (t – 60 seconds) range. Engineers and analysts usually focus on off-line applications, 
including system planning, post-event analysis, offline security assessment, market performance analysis. 
So they are more interested in historical data ranging from current to, say, 5-year-old data. Time for the 
data archiving system to respond to operators’ requests is critical, while engineers/analysts may not need 
very quick response from the data archive for offline applications. On the other hand, inside a single 
application, the time requirement may also be different. For example, the ACE-frequency real-time 
monitoring system can have data requests covering different time windows from current to 30 days 
(Figure 15) [27].  

 
Figure 15  ACE-Frequency real-time monitoring system functional overview 
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Therefore, to ensure prompt response from the data archiving system, different data requests should be 
treated differently. But all the data transactions need to be logged for future reference. This should be 
addressed at two aspects: data storage and data access.  

Data storage may have three manners in terms of retrieval speed and cost: online storage, near online 
storage and offline storage [4]. 

• Online data storage: Data are stored on rotating mass storage devices, magnetic, magnetic-optical, 
or optical. It is available in a matter of milliseconds. It can be managed by standard database 
management systems such as Microsoft SQL server or Oracle. 

• Near online data storage: This type of storage typically consists of robotic tape cartridge or 
optical juke box systems. Retrieval time for this data is in the seconds range. Its biggest drawback 
is that at the present time it cannot be managed by a database management system. Instead, data 
on these devices must be reloaded onto online storage media and reincorporated into database 
management systems. Although reloading may be done under program control, it may still take 
up to a few minutes. 

• Offline data storage: Offline data are typically located on removable magnetic disks, tapes or 
optical disks stored in data libraries. The retrieval process for offline data consists of locating the 
unit containing the desired data, hand loading it into a reading device, reloading it onto online 
storage, and reincorporating it into database management systems. This may take from several 
minutes to a few hours and is dependent on the availability of operators to locate and load the 
data. 

Stored data will be accessed by an automatic analysis program running at the storage location, such as 
Archive Walker (sophisticated analysis programs that “walk” through the data) and by users via the 
Internet. In both cases, the speed with which data can be retrieved is of concern. The most effective data 
storage schema for this application is to store the older data near at the online level. After a period of 
time, that data may migrate further to offline storage. This will ensure that the data most likely to be 
requested will be available immediately, older data will be available in a reasonable period of time, and 
all data will be retained so that it can be relocated if necessary. Besides the age of data, the retrieval 
frequency (Figure 8) may also be considered to decide when data should migrate from online to near 
online and to offline. 

It is obvious that online data storage is the best, but it is also the most costly. So online storage is 
constrained by the associated cost. To meet the requirements of system operations and online 
applications, all the data should be kept online for at least 30 days. 6 months of near online status are 
recommended. Offline data should be able to get online within a few hours upon request. 

Data networking technology provides various methods to access archived data. Possible options include: 

• Dedicated communications lines/channels: Dedicated communication lines are exclusively used 
for some specific data transfer. They are very expensive and also less flexible. They may only be 
used for a small amount of data of high sensitivity, security and confidentiality. An alternative is 
dedicated channels built over the Internet or other existing data networks. These channels remain 
alive once they are established until users terminate them. So high quality data transfer can be 
ensured. But they occupy the bandwidth all the time even when they are idle. Some techniques 
are available to build dedicated channels. The Virtual Private Network technique is an example 
for such a purpose [25]. These dedicated channels may be used for data that need high reliability,  

• ICCP-based NERCNet [8]: NERCNet employs ICCP, interconnecting about 123 control areas 
across the states. SCADA data can be gathered from control areas over secure connections using 
NERCNet, XML and SOAP technologies [14]. Current Grid-3P applications are using NERCNet 
for data exchange.  
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• WAMS [4,10]: WAMS consists of the WECC phasor data measurement network and the 
Internet-based data access system. Each PDC unit in the phasor network has the potential for 
providing real-time data sharing across a broad region of the power system. Presently, most of the 
directly integrated phasor networks are isolated from one another, so the Internet is employed as 
the bridge to share data and information between PDCs and from PDCs to other data users. 
Eastern WAMS is under development. The established data transfer mechanism in WAMS should 
be used. 

• FTP over the Internet: UserID/password authentication must be enforced. Used for less time 
critical applications. 

• Email over the Internet: Data security can be ensured by either the email account security or extra 
user identification information. This is the slowest method to retrieve data from the archive. Used 
for less time critical applications.  

As aforementioned, there may be a few data applications or functions with different data requests at a 
single physical point. The choice of data access method should be able to satisfy the most critical data 
request. For example, the ACE-frequency monitoring application in Figure 15 has a few functions 
requiring data with different time ranges and retrieval quality. The most critical data request is from the 
function of local monitoring visualization, where current data are required and high retrieval speed should 
be guaranteed; therefore, dedicated channels may be used or we can use the existing NERCNet as it is 
currently used. The general principle is to use existing infrastructure as much as possible.  

Also, to avoid the interference between critical and non-critical data retrievals, more than one data access 
method may be implemented at a single physical location. For example, the real-time ACE-Frequency 
monitoring and the local data archiving function at the reliability organization data center interfere with 
each other because these two functions compete for the ICCP-based NERCNet bandwidth. This 
interference may cause low performance, data loss and function failure to one or both functions. The 
solution may be to use NERCNet for real-time ACE-Frequency monitoring and use Internet-based 
method for data archiving. 

 

 

Figure 16  Data storage and data access methods for different data and data requests 
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8 RECOMMENDED FUTURE TASKS  

In line with the requirements presented in this paper, some case studies on the physical architecture for 
data archiving are presented in the Appendices. Future tasks will focus on the implementation of the data 
archiving system architecture. Some specific issues to be resolved are listed below.  

8.1 Data search engine 

This task involves collecting data information, analyzing data requests, routing data requests to data 
sources and maintaining a data search database.  It may be a web-based application. Depending on data 
request load, a “mirror” site may be built. 

8.2 Data conversion utilities 

Collect data formats that are currently being used in different data sources and code programs to convert 
data between different formats. Phasor data format [28] and PPSM binary format [4] are two examples. 
Other data formats [29] include IEEE C37.111-1991, Electrotek SuperHram, Fluke 41 and 97, etc. 
NetCDF (Network Common Data Format) [30] and HDF (Hierarchical Data Format) [31] are known as 
good formats for scientific data storing and sharing. They may be considered as common formats for data 
stored in the central database. 

8.3 Central database at the reliability organization data center 

It needs to be decided which data management method should be used for the central data storage: 
database management or file server management. Self-storing of retrieved data and self-cleaning of low-
usage data should be implemented. 

8.4 Data archiving performance investigation 

Network protocol compatibility is to be examined. Data transfer delay, routing error, data error and other 
relevant issues should be investigated. 

8.5 Data retrieval methods 

Different methods can be evaluated, e.g., FTP transfer, web-based HTTP downloading, data subscription, 
data transfer upon changes, etc. One or a few methods should be implemented based on the evaluation 
results. 

8.6 Data quality control 

Data quality can be monitored based on the quality of measurement units, initial data checking (e.g., max-
min check, data error check) and user evaluation [32]. Different quality levels can be defined and the data 
quality flag in the data stamp of a data file stores the data quality level. 

8.7 Data communication 

Investigate the current problems with ICCP implementations. Examine other communication 
infrastructures and protocols for communication performance.  
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9 GLOSSARY OF TERMS 
BPA Bonneville Power Administration  
CERTS Consortium of Electricity Reliability Technology Solutions 
DFR Digital Fault Recorder 
DMWG Disturbance Monitoring Work Group of the WECC 
DOE Department of Energy 
DSM Dynamic System Monitor  
EIPP Eastern Interconnection Phasor Project 
EPG Electric Power Group 
EPRI Electric Power Research Institute 
GPS Global Positioning System 
IED Intelligent Electronic Device 
M&VWG Modeling and Validation Work Group of the WECC 
NERC North American Electric Reliability Council  
PDC Phasor Data Concentrator 
PMU Phasor Measurement Unit 
PNNL Pacific Northwest National Laboratory 
PSM Power System Monitor (primary definition), Power System Measurements (secondary 

definition) 
RTPM Real-Time Performance Management  
SCADA Supervisory Control and Data Acquisition  
TVA Tennessee Valley Authority   
UTC Coordinated Universal Time (initials order based on French)  
WAMS Wide Area Measurement System 
WECC Western Electricity Coordinating Council  
WesDINet Western System Dynamic Information Network (usually just called the WECC WAMS) 
WSCC Western Systems Coordinating Council (predecessor to WECC) 
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APPENDIX 1. PHYSICAL DESIGN FOR REAL TIME PERFORMANCE 
MONITORING SYSTEMS – CASE STUDY I: GRID-3P ARCHITECTURE 

A1.1  Grid-3P Overall RTPM Architecture 

This architecture was created using a common framework referred to as the Grid Real-Time Performance 
Monitoring and Prediction Platform (GRID-3P). The Grid-3P is a layered architecture and is the common 
foundation for many CERTS RTPM tools. As shown in Figure 17, the layers consist of a data layer 
(relational database and associated time series/mining capability and associated data communications 
protocols and technologies), an application layer (application specific models and algorithms, e.g., 
optimization, probabilistic analysis, forecasting, risk assessment, performance metric evaluation, etc.) and 
the visualization layer (multi-view, multi-layer and geospatial outputs). The visualization layer utilizes 
synchronized multi-panel displays and it is considered one of the key innovations of the Grid-3P 
framework.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17  Grid-3P Research and Development Process 
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These calculations feed into the RTPM applications that monitor key performance indicators of system 
reliability conditions or market efficiencies. 

• End User Output Visualization - Layer 3  

Layer 3 in Figure 17 lists the characteristics of the local- and wide-area visual displays that present the 
information from layers 1 through 3.  The geographic, multi-layer and multi-view visualization strategy 
allows operators to quickly assess and act on system conditions. 
 
To deploy the above-mentioned overall architecture, two kinds of architectures are studies for data 
communications, databases, applications and data clients. The first is a XML-COM based architecture 
without Internet components for data security reasons, and the second a web-based architecture to have a 
common and easy to use human-interface. 

A1.2  Typical XML-COM Architecture 

Figure 18 shows the typical data flow for RTPM applications based on XML-COM. The left side of 
Figure 18 shows the process, beginning with collection of the required SCADA, market, phasor or 
information raw data by means of standard software or special programs developed for this purpose.  The 
database is populated using both validated raw input data and data produced using algorithms for 
sensitivity analysis, calculation of distance from collapse points, remedial action assessment, and risk and 
probabilistic analysis. The right side of Figure 18 shows the client side of the architecture - the multi-view 
and geographic visualization, that is the output of each RTPM application.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 18  Typical XML-COM Architecture 

 

A1.3  Typical Web Based Architecture 

Figure 19 shows the typical data flow for RTPM applications based on XML-COM Web architecture. 
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architecture, the requirements and design criteria from Sections 3, 4 and 5 should apply to the Grid-3P 
database, the Grid-3P client, and the data communication paths shown in Figure 19. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19  Grid-3P Web-Based Hardware and Software Architecture 
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APPENDIX 2. PHYSICAL DESIGN FOR REAL TIME PERFORMANCE 
MONITORING SYSTEMS – CASE STUDY II: WECC WAMS INFORMATION 
MANAGEMENT ARCHITECTURE 

This architecture is developed in the WECC WAMS for integrated information management [4]. In the 
WECC WAMS, deployment of new monitors – and the proliferation of "intelligent electronic devices" 
(IED's) in general – are overcoming many of the problems in acquiring raw data.  It is clear that this 
emerging abundance is producing a new generation of challenges in monitor operations.  Chief among 
these challenges are: 

• Timely extraction and routing of information resident in the data. 

• Selective retention of valuable data, without inundating data facilities. 

A2.1  WECC WAMS Data Management Functions 

Research into a generic WAMS Information Management System is designed to deal with such 
challenges.  A key element in this information system is a WAMS Database Manager (DBM).  
Conceptually and tentatively, functions of the WAMS DBM include the following: 

• Automatic Routing: 
– Operator alerts 
– Cross triggers to local and remote monitors 
– Event-driven control of local displays 
– Data retention requests to local and remote monitors 

• Servicing of Staff Requests: 
– Data transfers 
– Special data operations and displays 
– External triggering of local or remote monitors 
– Special log entries 

• Background Directory Operations: 
– Exchanges among DBM units 
– Integration, annotation, and indexing 
– Posting on EMS, OASIS, WWW 

• Background Data Operations: 
– Launching and supervision of the Archive Walker 
– Content-based compression and archiving 
– Logging of events and summary feature 

• Utility Functions: 
– Intelligent browsing of archive materials 
– File merging and compression 
– Hardcopy generation 

The monitors involved in this include SCADA, DFR, and other IED units in addition to the usual swing 
monitors.  The DBM will also need access to text-based materials, such as operator logs and detailed 
technical reports (e.g., on system tests and disturbances). 
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A2.2  WECC WAMS Information Management System Structure 

Figure 20 indicates the expected structure of a WAMS Information Management System plus its 
connections into the general power system information network. Figure 21 shows a network of 
measurement units in a topology that is natural to the western power system, and very similar to that of 
the Interregional Security Network (ISN) [33].  It seems likely that many of the Information Management 
functionalities will find applications within the resource base needed by the ISN and the WECC 
Independent System Operators (ISOs) [34]. 

 

Remote
Archives

Remote
Monitors

Local
Monitors

Operator Alerts

Cross Triggers

Display Controls

Data Retention Requests

Record-Value Tags

Diagnostic
Event

Scanner
(DES)

Local user inputs

Local
Archive #1

Local
Archive #n

INTERNET/
WWW

Remote
DBM Unit

Remote
Archives

Remote
Monitors

Regional
Monitors

WAMS Information Manager (WAMS IM)

Local
EMS

OASIS
WAMS

Database
Manager

(WAMS DBM)
data routing &

processing controls

Remote
DBM Unit

Security &
Control

 

Figure 20  Network connections for the WAMS Information Management System 
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Figure 21  Natural Architecture for the WAMS Information Management Network 

Detailed functional requirements for the WAMS Database Manager will necessarily reflect the many 
forms that the information can take and the many uses to which it may be put.  The time frame for 
applications may range from seconds to weeks or months, and that inputs to the DBM can range from raw 
operating data to processed information imbedded in technical reports.   In extreme cases it may be highly 
desirable to “browse” the collective knowledge of an entire power system on a given subject, without 
knowing where promising sources are located or if they even exist.  Modern information technology 
makes this entirely feasible.  The resources critical to the task are systematic access to the overall data 
base, plus a suitably “intelligent” search engine along the lines indicated in Figure 22. 
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Figure 22  General structure for text/time association of control center operation documents 
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APPENDIX 3. PHYSICAL DESIGN FOR REAL TIME PERFORMANCE 
MONITORING SYSTEMS – CASE STUDY III: OSI PI-BASED ARCHITECTURE 

The PI system builds a real-time enterprise by providing a real-time information infrastructure that closes 
the time and information gap between business objectives and actual production floor operations (Figure 
23). Data is acquired, routed, processed and displayed simultaneously on desktops, portables and PDAs 
throughout the enterprise worldwide. This valuable information is stored for decades, yet remains 
instantly accessible at its original time resolution for automated reporting, trending and analysis, 
providing insight into your process to realize significant gains across the enterprise. The PI system is your 
global window into the process. All your employees become knowledgeable workers, making decisions in 
real-time using real information. Real-time enterprises benefit from faster, more informed decisions that 
help them better meet production deadlines, customer demand and regulatory standards. Enterprises use 
real-time intelligence to improve quality control and business processes by using precision reporting, 
predictive maintenance and more comprehensive planning and analysis. The results are greater 
efficiencies, motivated employees and a more profitable enterprise overall. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23  OSI PI-Based Architecture 
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